36 research outputs found

    Field-Free Switching in Symmetry Breaking Multilayers: The Critical Role of Interlayer Chiral Exchange

    Full text link
    It is crucial to realize field-free, deterministic, current-induced switching in spin-orbit torque magnetic random-access memory (SOT-MRAM) with perpendicular magnetic anisotropy (PMA). A tentative solution has emerged recently, which employs the interlayer chiral exchange coupling or the interlayer Dzyaloshinskii-Moriya interaction (i-DMI) to achieve symmetry breaking. We hereby investigate the interlayer DMI in a Pt/Co multilayer system with orthogonally magnetized layers, using repeatedly stacked [Pt/Co]n structure with PMA, and a thick Co layer with in-plane magnetic anisotropy (IMA). We clarify the origin and the direction of such symmetry breaking with relation to the i-DMI effective field, and show a decreasing trend of the said effective field magnitude to the stacking number (n). By comparing the current-induced field-free switching behavior for both PMA and IMA layers, we confirm the dominating role of i-DMI in such field-free switching, excluding other possible mechanisms such as tilted-anisotropy and unconventional spin currents that may have arisen from the symmetry breaking

    A fault-tolerant cascaded switched-capacitor multilevel inverter for domestic applications in smart grids

    Get PDF
    Cascaded multilevel inverters (MLIs) generate an output voltage using series-connected power modules that employ standard configurations of low-voltage components. Each module may employ one or more switched capacitors to double or quadruple its input voltage. The higher number of switched capacitors and semiconductor switches in MLIs compared to conventional two-level inverters has led to concerns about overall system reliability. A fault-tolerant design can mitigate this reliability issue. If one part of the system fails, the MLI can continue its planned operation at a reduced level rather than the entire system failing, which makes the fault tolerance of the MLI particularly important. In this paper, a novel fault location technique is presented that leads to a significant reduction in fault location detection time based on the reliability priority of the components of the proposed fault-tolerant switched capacitor cascaded MLI (CSCMLI). The main contribution of this paper is to reduce the number of MLI switches under fault conditions while operating at lower levels. The fault-tolerant inverter requires fewer switches at higher reliability, and the comparison with similar MLIs shows a faster dynamic response of fault detection and reduced fault location detection time. The experimental results confirm the effectiveness of the presented methods applied in the CSCMLI. Also, all experimental data including processor code, schematic, PCB, and video of CSCMLI operation are attached. © 2013 IEEE

    Time series-based groundwater level forecasting using gated recurrent unit deep neural networks

    Get PDF
    In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002–March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike’s information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    A Light Guide Plate That Uses Asymmetric Intensity Distribution of Mini-LEDs for the Planar Illuminator

    No full text
    Traditional backlights are designed with new dot patterns, and then injection molding, laser beam fabrication, or UV (Ultraviolet) roll-to-plate imprinting is used to apply dot patterns to a light guide plate—the process consumes considerable time and resources. Therefore, we propose a novel light guide design that does not use a dot pattern. We designed an asymmetric intensity distribution of mini-LEDs (Light Emitting Diode) and a light guide plate with a fully printed diffusion reflection on the bottom surface for a planar illuminator. The design rules for the proposed architecture are described in this paper. The archetype design with a 152.4 mm circular down-light has a diameter of 143 mm for the planar light source module. The experiment achieved a total efficiency of 85% and uniformity of 92.6%

    Explainable machine learning models for estimating daily dissolved oxygen concentration of the Tualatin River

    No full text
    ABSTRACTMonitoring the quality of river water is of fundamental importance and needs to be taken into consideration when it comes to the research into the hydrological field. In this context, the concentration of the dissolved oxygen (DO) is one of the most significant indicators of the quality of river water. The current study aimed to estimate the minimum, maximum, and mean DO concentrations (DO min, DO max, DO mean) at a gauging station located on Tualatin River, United States. To that end, four machine learning models, such as support vector regression (SVR), multi-layer perceptron (MLP), random forest (RF), and gradient boosting (GB) were established. Root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (R), and Nash-Sutcliffe efficiency (NSE) metrics were employed to better assess the accuracies of these models. The modeling results demonstrated that the SVR and MLP surpassed the RF and GB models. Despite this, the SVR was concluded to be the best-performing method when used to estimate the DO min, DO max, and DO mean. The best error statistics in the testing phase were related to the SVR model with full (four) inputs to estimate DO mean concentration (RMSE = 0.663 mg/l, MAE = 0.508 mg/l, R = 0.945, NSE = 0.875). Finally, the explainability of the superior models (i.e. SVR models) was conducted using SHapley Additive exPlanations (SHAP) for the first time to estimate DO concentration. In fact, evaluating the explainability of machine learning models can provide useful information about the impact of each of the input estimators used in the procedure of models development. It was concluded that the specific conductance (SC) and followed by water temperature (WT) could provide the most contributions for estimating the DO min, DO max, and DO mean concentrations

    Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes by Optimizing the Diameter and Tilt of the Aluminum Sidewall

    No full text
    To realize high-efficiency AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs), enhancing their light-extraction efficiency (LEE) is crucial. This paper proposes an aluminum-based sidewall reflector structure that could replace the conventional ceramic-based packaging method. We design optimization simulations and experimental results demonstrated the light power output could be enhanced 18.38% of DUV-LEDs packaged with the aluminum-based sidewall
    corecore